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Abstract. Fuzzy control methods follow the human way of making control
decision. They are based on a usually large number of simple rules describing
the reaction of the system under control to each combination of its control
variables. Applied systems based on fuzzy control are of great importance in
navigation of space vehicles, flight control, missile speed control, industry and
manufacture, etc. In many cases, these are complex systems having many
variables to control. For such systems, the rule base explodes exponentially in
the number of variables. There are methods that considerably reduce the
number of rules; however, the performance of such reduced system depends on
the choice of some parameters, which have been so far determined only
manually based on the experience and knowledge of a skilled system designer.
We propose a method that uses a genetic algorithm to automatically determine
these parameters for the combination of sensory fusion and hierarchical rule
base reduction methods. The implementation process and simulation
experiments are presented.

1 Introduction

Since the decade of the 80’s, fuzzy logic has been the main source of practical and
simple solutions for a great diversity of applications in engineering and science.
Fuzzy control algorithms have been the most active area of research in fuzzy logic in
the recent years. They are crucial in navigation systems, flight control, satellite
control, speed control of missiles, as well as in industrial and manufacturing
processes. Some fuzzy control applications to industrial processes produce results
superior to those obtained by classical control methods. Moreover, these methods
have serious limitations in their expanding to more complex systems, because
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currently there is no complete theory of how to predict the behavior of the system
after a change in its parameters or variables.

Unlike the classical methods, fuzzy control methodology allows for simple and
intuitive expansion to highly complex systems. However, for complex systems the
number of fuzzy rules is increased exponentially in the number of variables
describing the system: for n variables taking m possible linguistic labels each, m"
rules is needed to construct a complete fuzzy controller. As n grows, the rule base
quickly becomes unmanageable. Various methods have been suggested to reduce the

number of rules used by the controller.
A combination of sensory fusion and hierarchical methods is very effective in

reducing the rule base. However, the popularity of these methods has been limited
due to necessity for manually choosing quite a number of parameters: as many as
there are variables. So far it has required tedious work and great experience of the
system designer in order to find a good—even if not optimal—set of parameters [1].
In this paper, we propose a completely automatic method for choosing the very
optimal parameters. Specifically, we use a genetic algorithm (GA) to choose their
optimal combination. The paper is organized as follows. Section 2 introduces
complex fuzzy control systems. In Section 3, the principles of rule base reduction
methods are described. Section 4 proposes the GA-based algorithm that allows for

automatically finding the optimal combination of parameters. Experimental results are
presented in Section 5 and conclusions in Section 6.

2 Complex Fuzzy Control Systems

A system is complex if its order (the number of control variables) is too high and its
model is nonlinear, interconnected with uncertain information flow, so that classical
techniques of control theory cannot easily deal with such a system [1]. As the
complexity of a system increases, it becomes more difficult and eventually impossible
to make a precise statement about its behavior. Fuzzy logic is used in system control
and analysis design, because simplifies engineering development; sometimes, in the
case of highly complex systems, it is the only way to solve the problem.

The main components of a fuzzy controller are: a process of coding numerical
values into fuzzy linguistic labels, an inference engine where the fuzzy rules are
implemented, and decoding of the output fuzzy decision variables. Fuzzy control can
be implemented by putting the above three stages on a chip or a personal computer.

Dealing with a complex fuzzy system remains a big challenge for any control
paradigm to manage the number of the fuzzy IF-THEN rules. When a fuzzy
controller is designed for a complex system, often several output and input variables
are involved. In addition, each variable is represented by a finite number m of
linguistic labels which indicate that the total number of rules is equal to m", where n
is the number of system variables. As an example, consider n =4 and m = 5 than the
total number of fuzzy rules will be k = m" = 5! = 625. For five variables, k = 3125.
From the above simple example, it is clear that the application of fuzzy control to any
system of significant size would result in a dimensionality explosion.
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3 Methods for Reduction of the Rule Base

One of the most important applications of fuzzy set theory has been in the area of
fuzzy rule based system. Rule base reduction is an important issue in fuzzy system
design, especially for real time Fuzzy Logic Controller (FLC) design. Rule base size
can be easily controlled in most fuzzy modeling and identification techniques.

The size of the rule base of complex fuzzy control systems grows exponentially
with the number of input variables. Due to that fact, the reduction of the rule base is a
very important issue for the design of this kind of controllers. Several rule base
reduction methods have been developed to reduce the rule base size. For instance,
fuzzy clustering is considered to be one of the important techniques for automatic
generation of fuzzy rules from numerical examples. This algorithm maps data points
into a given number of clusters [2]. The rule base size can be controlled through the
control of the number of cluster centers. However, for control applications, often
there is not enough data for a designer to extract a rule base for the controller.

A simple and probably most effective way to reduce the rule base size is to use
Sliding Mode Control. The motivation of combining Sliding Mode Control and Fuzzy
Logic Control is to reduce the chattering in Sliding Mode Control and enhance
robustness in Fuzzy Logic Control. The combination also results in rule base size
reduction. However, this approach has its disadvantages as the parameters for the
switch function have to be selected by an expert or designed through classical control
theory [3].

Anwer [4] proposed a technique for generation and minimization of the number of
such rules in case of limited data sets availability. Initial rules for each data pairs are
generated and conflicting rules are merged on the basis of their degree of soundness.
This technique can be used as an alternative to develop a model when available data
may not be sufficient to train the model.

A neuro-fuzzy system [5-9] is a fuzzy system that uses a learning algorithm
derived from, or inspired by, neural network theory to determine its parameters
(fuzzy sets and fuzzy rules) by processing data samples. Modern neuro-fuzzy systems
are usually represented as special multilayer feedforward neural networks (for
example, models like ANFIS [8], FuNe [9], Fuzzy RuleNet [10], GARIC [11], HyFis
[12] or NEFCON [13] and NEFCLASS [14]). A disadvantage of these approaches is
that the determination of the number of processing nodes, the number of layers, and
the interconnections among these nodes and layers are still an art and lack systematic
procedures.

Jamshidi [1] proposed to use sensory fusion to reduce a rule base size. Sensory
fusion combines several inputs into one single input. The rule base size is reduced
since the number of inputs is reduced. Also, Jamshidi [1] proposed to use the
combination of hierarchical and sensory fusion methods. The disadvantage of the
design of hierarchical and sensory fused fuzzy controllers is that much reliance has to
be put on the experience of the system designer to establish the needed parameters.
To solve this problem, we automatically estimate the parameters for the hierarchical

method using GAs.
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3.1 Sensory Fusion Method

This method consists in combining variables before providing them to input of the
fuzzy controller. These variables are often fused linearly. For example, we want to
fuse two input variables yi and y, (see Figure 1). The fused variable Y will be
calculated as Y = ay, + by,. Here, it is considered that the input variables of the fuzzy
controller are represented by m=5 linguistic labels. So in this case, the number of
rules will be thus reduced from 25 to 5. More variables has the fuzzy controller, more
reduction can be obtained (see Figure 4).
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Fig. 1. Fuzzy logic controller’s rule base reduction when two variables are fused.

The reduction of the number of rules is optimal if one can fuse all the input
variables in only one variable associated. In this case, the number of rules is equal to
the definite number of linguistic labels for this variable. But it is obvious that all these
variables cannot be fused arbitrarily, any combination of variables has to be reasoned
and explained. In practice only two variables are fused: generally the error and the
change of error. The fusion can be done through the following rule

E= ae +bAe 1)

where e and Ae are error and its rate of change, E is the fused variable, and a and b
found manually [1].

We want to point out that the manually selection of the parameters a and b convert
into fastidious and time-consuming routine. And the described method which permits
to reduce significant the number of rules can’t be used easily.

3.2 Hierarchical Method

In the hierarchical fuzzy control structure from [1], the first-level rules are those
related to the most important variables and are gathered to form the first-level
hierarchy. The second most important variables, along with the outputs of the first-
level, are chosen as inputs to the second level hierarchy, and so on. Figure 2 shows
this hierarchical rule structure.

IF y, is Ay; and ... and y, is 4, THEN u, is B, (2)
IF yyi+1 is Ayip and ... and Yyjsr is Ani THEN u; is B,

where ij = 1, ...,n; y; are the control system’s output variables, u; are the system’s
control variables, 4; and B; are linguistic labels; N, = 5’ ’j‘_'l n,<n and n; is the

number of j-th level system variables used as inputs.
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Fig. 2 Schematic representation of a hierarchical fuzzy controller.

The goal of this hierarchical structure is minimize the number of fuzzy rules from
exponential to linear function. Such rule base reduction implies that each system
variable provides one parameter to the hierarchical scheme. Currently, the selection
of such parameters is done manually, which is a tedious and time-consuming.

3.3 Combination of the Methods

The more number of input variables of the fuzzy controller we have, the more it is
interesting to combine the methods presented above with a goal to reduce more the
rule base. We want to quote, as an example, the combination of the sensory fusion
method and the hierarchical method. The sensory fusion method (section 3.1)
combined to the hierarchical method (section 3.2) led to an approach illustrated in
Figure 3. Initially, the variables are fused linearly, as in Figure 1, and then are
organized hierarchically according to a structure similar to that of Figure 2.
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Fig. 3 Combination of the methods for »=5 and m=35.

The comparison of the sensory fusion method, the hierarchical method and the
combination of these rule base reduction methods is presented in Figure 4. Take into
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account that the variables are fused here per pair and that on each level of the
hierarchy one and only one variable is added. The most significant reduction can be
obtained when the sensory fusion and hierarchical methods are combined.
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Fig. 4 Comparison of various rule base reduction methods with m=3.

4 Genetic Optimization

In this section, we present the proposed method to estimate the parameters of the
combination of the sensory fusion and hierarchical rule base reduction methods. The
scheme of the proposed method is shown in Figure 5. We have three modules:
System Module, Fuzzy Controller Module, and Genetic Algorithm Module. These
three modules interconnect in two loops: an internal loop to control a system and an
external loop to modify the fusion-hierarchical parameters. The internal loop
comprises the fuzzy controller module and the system module. In other words, this
loop represents a closed-loop control scheme. The external loop is composed of the
genetic algorithm module, the fuzzy controller module, and the system module. The
objective of the genetic algorithm module is to estimate the fusion-hierarchical
parameters of the fuzzy controller through the minimization of the error between the
design specifications and the output of the process. Below we discuss each module of
the proposed method. |

4.1 Control System Module

The control system is defined as a complex system with p inputs and q outputs:

U=y, .oy Ul Y= [Y1 «ees Yoli 3)
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Fig. 5. Scheme of the proposed method.

4.2 Fuzzy Controller Module

The fuzzy controller module is represented by the fuzzy controller of reduced
complexity which results after the application of the sensory fusion and hierarchical
rule base reduction methods (described above) such that it uses the combination of
the fusion-hierarchical parameters.

The fuzzy controller is composed of one or several fuzzy controllers (depending
on the number of variables). These controllers are of the Takagi-Sugeno type and
each has a maximum of two inputs. The variation of these inputs results from the
design of the sensory fusion and hierarchical methods or the output variables of
another fuzzy controller.

4.3 Genetic Algorithm Module

The Genetic Algorithm module represents a genetic algorithm that maintains a
population of chromosomes where each of which represents a combination of
candidate parameters. This genetic algorithm uses data from the system to evaluate
the fitness of each parameter in the population. It does this evaluation at each time
step by simulating out with each combination of the parameters and forming a fitness
function based on the design specifications which characterize the desired
performance of the system. Using this fitness evaluation, the genetic algorithm
propagates parameters into the next generation via the combination of the genetic
operations proposed below. The combination of the parameters that is the fittest one
in the population is used in the sensory fusion fuzzy controller.

This allows the proposed method to evolve automatically the combination of
parameters from generation to generation (i.e., from one time step to the next, but of
course multiple generations could occur between time steps) and hence to tune the
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combination of the parameters in response to changes in the system or due to user
changes of the specifications in the fitness function of the GA.
We use a standard GA algorithm, which can be summarized as follows:

Determine the rule base reduction method and the number of parameters to find.
. Construct an initial population.

Encode each chromosome in the population.

Evaluate the fitness value for each chromosome.

Reproduce chromosomes according to the fitness value calculated in Step 4.
Create offspring and replace the parent chromosomes by the offspring through
crossover and mutation.

7. Go to 3 until the maximum number of iterations is met.

AUAWN

4.3.1 Representation

To encode the combination of parameters, chromosomes of length N ‘B are used,
where N is the number of parameters and B the number of bits, which we use to
encode the parameters. To decide how many bits to use for each parameter, we
should consider the range of all possible values for each of them. For example,
suppose that the parameters we want to obtain are positive with one decimal after the
dot. To encode all possible values of each parameter we will use 8 bits. In F igure 6,
there is one chromosome, representing the combination of parameters, which has N =
4 parameters with B = 8 bits each. So, the total range of the parameters will be in the
interval [0, 256]. To obtain the required precision (one decimal after the dot), we
multiply the output values of the parameters by 0.1. As a result, the searching
parameters will be in the interval [0, 25.6].

4.3.2 Population
The initial population is randomly generated. Its size is fixed and equal to 50

individuals.
N B

a|=l5|10|j0fJO0]jO|1]|]1}f1]1

c|=203| 1|1|[O0OfjO)1|O]1]1

d|=3 [o0|JOfO|]1]|1|1]1]0

Fig. 6. Example of representation of one chromosome (or one combination of parameters)
which has N = 4 parameters with B = 8 bits each.
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4.3.3 Fitness Function

The genetic algorithm maintains a population of chromosomes, each of which
represents a different combination of parameters. It also uses a fitness measure that
characterizes the closed-loop specifications. Suppose, for instance, that the closed-
loop specifications indicate that the user want, for a step input, a (stable) response
with a rise-time of ¢°,, a percent overshoot of s',,, and a settling time of 7 ,. We
propose the fitness function so that it measures how close each individual in the
population at time ¢ (i.e., each parameter candidate) is to meet these specifications.
Suppose that ¢, s,, and #, denote the rise-time, the overshoot, and the settling time,
respectively, for a given chromosome (we compute them for a chromosome in the
population by performing a simulation of the closed-loop system with the candidate
combination of the parameters and a model of the system). Given these values, we
propose (for each chromosome and every time step)

T=wi(t— 1) + wy (5, — 8"p) + ws (t; — 1) 4)

where w; > 0, i = 1, 2, 3, are positive weighting factors. The function J characterizes
how well the candidate combination of the parameters meets the closed-loop
specifications; if J = 0 it meets the specifications perfectly. The weighting factors can
be used to prioritize the importance of meeting the different specifications (e.g., a
high value of w;, relative to the other values indicates that the percent overshoot
specification is more important to meet than the others).

Now, we would like to minimize J, but the genetic algorithm is a maximization
routine. To minimize J with the genetic algorithm, we propose the fitness function

Jres= 1/J. 5

We know the design specifications of the system and we can obtain the step
response characteristics for each chromosome in the population (rise-time, overshoot,
and settling time). If the results given by the GA are in the range of the design
specifications of the system, then the fitness function is defined by (4), (5); otherwise,
it is set to 1000.

5 Simulation Results

The proposed method was tested in the inverted pendulum control system [15].
The objective of this control system is, on one hand, to maintain the stem of the
pendulum in high driving position, on the other hand, to bring the cart towards a
given position x,. The scheme in Figure 7 shows the main components of the system.

The basic variables are:

— the angular position of the stem 8,
— the angular velocity of the stem A8;
— the horizontal position of cart x;

— the velocity of the cart Ax.
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Fig. 7. Inverted pendulum, where M= 1 kg is the mass of the cart, m = 0.1 kg is the mass of the
pendulum, /=1 m is the length to pendulum, F is the force applied to the cart, x is the cart
position coordinate, € is the pendulum angle with vertical.

The design specifications of the inverted pendulum system are:

— the objective position of the cart is 30 cm;
— the overshoot of no more than 5 %;
— the settling time of no more than 5 sec.

The objective position where we must to bring a cart is x,, The variables to fuse are
g and 46, e and de, where e is the error in position given by e = x - X, and de = Ax.
The sensory fusion of the error in position and its variation X, = ce + dAe combined
with a hierarchical method led to the fuzzy controller represented in Figure 8. The
first fuzzy controller (FC1) calculates the first control action according to X, and the
angular position 6. In the second fuzzy controller (FC2), it .refines the value of
preceding control by considering an additional variable A@. The fuzzy controller
based on fusion-hierarchical combination is represented in the Figure 8. The rule

bases of FC1 and FC2 are represented in Table 1.
Xo

i
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Fig. 8 Fuzzy controller based on the combination of the sensory fusion
and hierarchical methods.

The simulation of the inverted pendulum is performed in Simulink, Matlab starting
from the nonlinear equations [15]. The fuzzy controller is implemented in Matlab FIS
Editor. The input fuzzy sets are represented by triangular functions (N, Z and P)
regularly distributed on the universe of discourse [-1, 1]. The output fuzzy sets are
singletons regularly distributed on [-1, 1].
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Table 1. Rule bases of the fuzzy controllers FC1 (left) and FC2 (right).

ab b6

X N Z P " N Z P
N N N N N 2z
z N Z - Z N Z P
P P P Z P P

For the reduction with the combination of methods we obtained the following
parameters: a=25.3, b=10.1, ¢=3.4 and d=5.5. With these parameters the
horizontal position of the cart is stabilized in 5 seconds with overshoot equal to O (see

Figure 9), and the behavior of the angle position of the stem of pendulum is shown in
the Figure 10.

Time (sec.) Time (sec.)
Fig. 9. Horizontal position of the cart.  Fig. 10. Angle position of the stem of
pendulum.

6 Conclusions

The combination of sensory fusion and hierarchical methods makes it possible to
reduce the dimensionality of the control problem more significantly than any of the
two methods separately. So far the parameters for such combination have been
determined only manually, which requires months of tedious work of highly skilled
expert. We suggested a method for automatically finding the optimal combination of
such parameters. Our main contribution is the function to be optimized; then we use a
genetic algorithm for optimization of this fitness function. We tested the proposed
algorithm on a simulation of the inverted pendulum control problem and showed that
the fusion-hierarchical parameters for the design specifications of this problem were
adequately found.

Due to the fact that the fitness function is based on the design specification of the
system, we can apply it to any combination of fusion-hierarchical variables. Another
very important advantage is that when the user changes the design specifications, we
can obtain the necessary fusion-hierarchical parameters very quickly by using the
proposed GA. GA helps not only to automatically estimate the fusion-hierarchical
parameters, but also to improve the results obtained by the combination of methods.
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